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Abstract
We consider the classical elliptic Calogero–Moser model. A set of canonical
separated variables for this model has been constructed in Kuznetsov et al.
However, the generating function of the separating canonical transform is
known only for two- and three-particle cases. We construct this generating
function for the next A3 case as the limit of the conjectured form of the quantum
separating operator. We show explicitly that this generating function gives a
canonical transform from the set of original variables to the separated ones.

PACS numbers: 0230I, 0230J, 4550J

1. Introduction

The separation of variables (SoV) method is one of the powerful approaches to solve spectral
problems for quantum integrable systems (see [2] for an overview). This method has been
successfully applied to many integrable systems. However, it appears that the Calogero–Moser
system (CMS) [3, 4] (and its relativistic analogue the Ruijsenaars model [5]) is an example
where SoV encounters some difficulties. Namely, as shown in [6] the classical r-matrix for the
CMS depends explicitly on dynamical variables when a quantization procedure is not known.
As a result all approaches concerning the quantum SoV for these systems have used, in fact,
ad hoc methods. The interest in producing a SoV for the CMS is twofold. The first reason
is obvious: the SoV method can help to reduce the multi-dimensional spectral problem for
the CMS to a set of one-dimensional ones which are easier to handle. The second reason
is a connection of different limits of the CMS with symmetric functions [7]. In particular,
the SoV method for the A2 quantum CMS in the trigonometric limit produces a new integral
representation for the A2 Jack polynomials [8].

In the paper [1] a set of separated canonical variables has been constructed for the classical
Ruijsenaars model (which gives CMS when λ → 0). The new canonical separated variables
come as poles of the properly normalized Baker–Akhiezer function. However, to describe
explicitly a transformation to the new set of canonical variables we need to know a generating
function. This function was constructed in [1] for the A2 case. For the An, n > 3 it satisfies
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complicated nonlinear partial differential equations (PDEs) and there is little hope of solving
them directly. In this paper we will show how to parametrize solutions of this PDE for the A3

case. This parametrization comes naturally from the asymptotics of the solutions of special
systems of linear equations for the separating kernel in the quantum case.

The paper is organized as follows. In section 2 we recall the main properties of the
classical CMS and give necessary definitions of Weierstrass elliptic functions. In section 3 we
recall the main facts about the SoV [1] for the CMS and introduce some convenient notations.
In section 4 we formulate the quantum version of the model and make a conjecture on the
quantum separation operator. In section 5 we prove the main theorem that the A3 generating
function is given by the asymptotics of this operator. In section 6 we give some concluding
remarks.

2. The classical Calogero–Moser system

The elliptic N -particle CMS [3, 4] is described in terms of canonical variables pi , qi ,
i = 1, . . . , N with Poisson brackets

{pi, pj } = {qi, qj } = 0 {pi, qj } = δij (2.1)

and Hamiltonian

H =
N∑
i=1

p2
i + g2

∑
i �=j

℘ (qi − qj ) (2.2)

where ℘(x) is the Weierstrass function with periods 2ω1 and 2ω2 (see, e.g., [9]).
Let us summarize some important properties of Weierstrass functions [9] to be used later.

We define the Weierstrass σ -function by the infinite product

σ(x) = x
∏

m,n�=0

(
1 − x

ωmn

)
exp

[
x

ωmn

+
1

2

(
x

ωmn

)2
]

(2.3)

where ωmn = 2mω1 + 2nω2, m, n ∈ Z and � = 2ω1Z + 2ω2Z is the period lattice. Then ζ

and ℘ Weierstrass functions are defined as

ζ(x) = σ ′(x)
σ (x)

℘ (x) = −ζ ′(x). (2.4)

The function ℘(x) is an elliptic function of periods 2ω1, 2ω2, which is even and has the
only double pole at z = 0 in the primitive domain D := {z = 2ω1x + 2ω2y|x, y ∈ [0, 1)}.
The functions ζ(x) and σ(x) are odd functions, which are quasi-periodic, obeying

ζ(x + 2ω1,2) = ζ(x) + 2η1,2 σ(x + 2ω1,2) = −σ(x)e2η1,2(x+ω1,2) (2.5)

where η1,2 = ζ(ω1,2) and η1ω2 − η2ω1 = iπ
2 .

They have the following expansions near the origin:

σ(x) = x − g2x
5

240
− g3x

7

840
− g2

2x
9

161 280
+ · · ·

ζ(x) = 1

x
− g2x

3

60
− g3x

5

140
− g2

2x
7

8400
+ · · ·

(2.6)

with

g2 = 60
∑
m,n�=0

1

ω4
mn

g3 = 60
∑
m,n�=0

1

ω6
mn

. (2.7)
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Weierstrass functions satisfy addition theorems; the most important are

ζ(x + y) = ζ(x) + ζ(y) +
1

2

℘ ′(x) − ℘ ′(y)
℘ (x) − ℘(y)

(2.8)

℘(x + y) + ℘(x) + ℘(y) = [ζ(x + y) − ζ(x) − ζ(y)]2 (2.9)

σ(x + y)σ (x − y) = −σ 2(x)σ 2(y)[℘(x) − ℘(y)] (2.10)

�(u, x)�(u, y) = �(u, x + y)[ζ(u) + ζ(x) + ζ(y) − ζ(u + x + y)] (2.11)

where

�(u, x) = σ(u + x)

σ (u)σ (x)
(2.12)

and the generalized Cauchy identity

det
[
�(u, xi − yj )

] = �(u,�)σ(u,�)

∏
k<l σ (xk − xl)σ (yl − yk)∏

k,l σ (xk − yl)
(2.13)

with � = ∑
i (xi − yi).

The system with Hamiltonian (2.2) is completely integrable [3,4,10] and the complete set
of integrals of motion can be represented as spectral invariants of the Lax operator. Namely,
define the N × N Krichever Lax operator [11]

L(u) =
N∑
i=1

piEii − ig
∑
i �=j

�(u, xi − xj )Eij (2.14)

with matrix Eij having the nonzero entries (Eij )kl = δikδjl and �(u, x) defined by (2.12).
Then a decomposition of det(z · 1 − L(u)) in z

det(z · 1 − L(u)) =
N∑
i=0

(−1)izN−i ti (u) (2.15)

generates a set of commuting Hamiltonians Hi , i = 1, . . . , N with respect to the Poisson
bracket

{Hi,Hj } = 0 i, j = 1, . . . , N. (2.16)

3. The separation of variables

In this section we briefly recall the results from sections 3 and 6 of [1] (see also [2]).
We are looking for a canonical transformation K which maps (q, p) �→ (u, v),

Hi(x, p) �→ Hi(u, v) such that there exist N relations

�i(ui, vi;H1, . . . , HN) = 0 i = 1, . . . , N. (3.1)

The main problem is to construct a generating function F(u|q) which performs such a
separation.

A Baker–Akhiezer function is defined as the eigenvector of the Lax operator L(u)

L(u)((u) = v(u)((u) (3.2)

with a normalization fixed by a linear condition

�α · ( ≡
N∑
i=1

αi(u)(i(u) = 1. (3.3)
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The separated variables ui are thought of as poles of the properly normalized Baker–
Akhiezer function. Then the canonically conjugated variables vi are the corresponding
eigenvalues of L(ui) and satisfy separation equations (3.1)

�i ≡ det(vi · 1 − L(ui)) = 0. (3.4)

From (3.2), (3.3) it follows that

((u) =




�α
�αL(u)

...

�αLn−1(u)




−1

·




1
v
...

vn−1


 . (3.5)

Define the function

B(u) = det




�α
�αL(u)

...

�αLn−1(u)


 . (3.6)

Then the poles ui (or separated variables) of the Baker–Akhiezer function are defined
from the condition B(uj ) = 0.

It has been shown in [1] that the simplest normalization condition �α(u) = (0, 0, . . . , 0, 1)
works for the CMS. With such a normalization the expression for B(u) takes the form

B(u) = det




0 · · · 1
Ln1 · · · Lnn

...
. . .

...

(Ln−1)n1 · · · (Ln−1)nn


 . (3.7)

Given the poles ui the conjugate variables vi can be defined from the equation

(L(ui) − vi)
∧
nk = 0 k = 1, . . . , n (3.8)

and the wedge denotes the adjoint matrix.
It was shown in [1] that in the primitive domain D the function B(u) has exactly N − 1

zeros ui and N − 1 pairs (ui, vi) together with the variables (Q, P ), describing the motion of
the centre of mass,

X = qN P =
N∑
i=1

pi (3.9)

give the complete canonical set of new variables.
First let us examine the A2 case (see [1]). We shall introduce another set of canonical

variables. The first set (yi; xi,Q;P) simply describes a separation of the motion of the centre
of mass

x1 = q1 − q3 x2 = q2 − q3 Q = q3

y1 = p1 y2 = p2 P = p1 + p2 + p3.
(3.10)

Then we introduce two sets of canonical variables in the reduced phase space (with
eliminated canonical variables (Q, P ))

x+ = x1 + x2 x− = x1 − x2 y+ = 1
2 (y1 + y2) y− = 1

2 (y1 − y2)

u+ = u1 + u2 u− = u1 − u2 v+ = 1
2 (v1 + v2) v− = 1

2 (v1 − v2).
(3.11)

The generating function F of the separating transformation can be written as
F(v+, u−; x+, x−) or F(v+, u−; x1, x2). We prefer to use the second form, which is more
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convenient for a generalization to the A3 case. This function performs the canonical
transformation from (x1,2, y1,2) to (u±, v±) such that

u1 + u2 = x1 + x2 mod � (3.12)

and
∂F
∂x1

= y1
∂F
∂x2

= y2
∂F
∂v+

= u+
∂F
∂u−

= −v−. (3.13)

The next trivial observation is important for a generalization to the A3 case: the function
F(v+, u−; x1, x2) allows the following decomposition:

F(v+, u−; x1, x2) = v+x+ + ig log
σ(x1)σ (x2)

σ (u1)σ (u2)σ (x1 − x2)
+ F(u−, x−). (3.14)

Here we imply that all variables in the RHS of (3.14) have to be expressed in terms of
(v+, u−; x1, x2) using (3.11), (3.12). Note that F depends only on pairwise differences of xi ,
ui . Then we have

y1,2 = v+ + ig

[
ζ(x1,2) ∓ ζ(x1 − x2) − 1

2
(ζ(u1) + ζ(u2))

]
+ y1,2, y1,2 = ∂F

∂x1,2
. (3.15)

Evaluating the determinant in (3.7) and using (3.8) we obtain that the condition B(u) = 0
is equivalent to

v1,2 = A1(u1,2) = A2(u1,2) (3.16)

with

Ai(u) = yi + ig[ζ(u) − ζ(xi) + ζ(xi − x3−i ) − ζ(u − x3−i )]. (3.17)

Using (3.15) we can rewrite (3.16) as follows:

y1 − y2 = 2
∂

∂x−
F(u−, x−) = ig[ζ(u − x2) − ζ(u − x1)] u = u1,2. (3.18)

It is a simple calculation to check that a solution of (3.18) which is compatible with (3.12),
(3.13), (3.15), (3.16) has the following form:

F(u−, x−) = ig log σ
(x− + u−

2

)
σ

(
x− − u−

2

)
. (3.19)

We see that the PDE (3.18) for F involves a reduced number of variables and looks rather
simpler than the equation (3.16) for F . Our purpose is to obtain analogues of (3.18) for the
A3 case and try to solve them.

Again we start with a set of canonical variables (yi; xi,Q;P), i = 1, 2, 3

x1 = q1 − q4 x2 = q2 − q4 x3 = q3 − q4 Q = q4

y1 = p1 y2 = p2 y3 = p3 P = p1 + p2 + p3 + p4
(3.20)

and introduce in the reduced phase space canonical variables

x+ = x1 + x2 + x3

3
x ′ = 2x1 − x2 − x3

3
x ′′ = 2x2 − x1 − x3

3
y+ = y1 + y2 + y3 y ′ = y1 − y3 y ′′ = y2 − y3

(3.21)

and similarly a set of separated variables

u+ = u1 + u2 + u3

3
u′ = 2u1 − u2 − u3

3
u′′ = 2u2 − u1 − u3

3
v+ = v1 + v2 + v3 v′ = v1 − v3 v′′ = v2 − v3.

(3.22)
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The generating function F(v+, u
′, u′′; x1, x2, x3) performs the canonical transformation

from (x1,2,3, y1,2,3) to (u+, u
′, u′′; v+, v

′, v′′) such that

u1 + u2 + u3 = x1 + x2 + x3 mod � (3.23)

and

∂F
∂v+

= u+
∂F
∂u′ = −v′ ∂F

∂u′′ = −v′′ ∂F
∂xi

= yi i = 1, 2, 3. (3.24)

We introduce the ‘reduced’ generating function F by the formula

F = v+x+ + ig log

∏3
i=1 σ(xi)∏3

i=1 σ(ui)
∏

i<j σ (xi − xj )
+ igF . (3.25)

Zeros of the determinant (3.7) define the separated variables ui , i = 1, 2, 3. Then the
conjugated variables vi are simply rational functions of matrix elements of the Lax operator
evaluated at ui and can be found from (3.8). We want to find a convenient expression for
this determinant. This calculation is quite tedious and involves complicated elliptic identities
between Weierstrass functions. The easiest way to calculate B(u) is to check compatibility
conditions for vi coming from (3.8) (see formulas (5.12) below). Here we shall only give the
final result.

Using (3.25) let us make a change of variables

yi = 1
3v+ + ig

[
ζ(xi) − ζ(xi − xj ) − ζ(xi − xk) − 1

3

3∑
l=1

ζ(ul)

]
+ igyi (3.26)

where {i, j, k} is a permutation of {1, 2, 3}, yi = ∂
∂xi

F .
Then the determinant in (3.7) can be written as

B(u) = ig3
3∏

i=1

�(u,−xi)B(r1, r2|�x, u) (3.27)

with

B(r1, r2|�x, u) = {
r̃1r̃2(r̃1 − r̃2)

+2r̃1r̃2[ζ(x1 − u) − ζ(x2 − u) − ζ(x1 − x2)]

+r̃2
1 [ζ(x1 − x2) + ζ(x2 − u) − ζ(x1 − x3) − ζ(x3 − u)]

+r̃2
2 [ζ(x1 − x2) − ζ(x1 − u) + ζ(x2 − x3) + ζ(x3 − u)]

}
(3.28)

where �x ≡ {x1, x2, x3} and

r̃1,2 = r1,2 + 2[ζ(x3 − u) − ζ(x1,2 − u)]

r1,2 = y1,2 − y3 =
{

∂

∂x ′ ,
∂

∂x ′′

}
F .

(3.29)

From (3.28) we can see that this equation depends only on pairwise differences of xi
and u as in (3.18). Therefore, the reduced generating function F depends effectively on four
independent variables (say, xi − u1, i = 1, 2, 3 and u2 − u1). However, despite the fact that
a big simplification has happened we still have a very complicated nonlinear PDE (3.28) with
elliptic coefficients which is difficult to solve.

In the next sections we will show that a natural parametrization of the equation (3.28)
comes from the quantum case.
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4. The quantum A3 Calogero–Moser system

For the classical A3 CMS we have four commuting Hamiltonians [10]

H1 =
4∑

i=1

pi H2 =
∑
i<j

pipj − g2
∑
i<j

℘ (qi − qj )

H3 =
∑

i<j<k

pipjpk − g2
∑
i<j

℘ (qi − qj )(pk + pl) i < j �= k < l

H4 = p1p2p3p4 − g2
∑
i<j

℘ (qi − qj )[pkpl − 1
2g

2℘(qk − ql)] i < j �= k < l.

(4.1)

They come from the spectral invariants of the Lax operator (2.14)

det(z · 1 − L(u)) = z4 − z3t1(u) + z2t2(u) − zt3(u) + t4(u) (4.2)

t1(u) = H1

t2(u) = H2 + 6g2℘(u)

t3(u) = H3 + 3g2℘(u)H1 − 4ig3℘ ′(u)
t4(u) = H4 − ig3℘ ′(u)H1 + g2℘(u)H2 + g4[3℘2(u) − ℘ ′′(u)].

(4.3)

The separated variables (vj , uj ) satisfy the relations

det(vj · 1 − L(uj )) = v4
j − v3

j t1(uj ) + v2
j t2(uj ) − vj t3(uj ) + t4(uj ) = 0. (4.4)

Now let us consider the quantum case. We replace pi by differentiations pj → −i∂qj and
instead of Hamiltonians (4.1) we have four commuting differential operators

H1 = −i
4∑

j=1

∂qj H2 = −
∑
j<k

∂qj ∂qk − g(g − 1)
∑
j<k

℘ (qj − qk)

H3 = i
∑
j<k<l

∂qj ∂qk ∂ql + ig(g − 1)
∑
j<k

℘ (qj − qk)(∂ql + ∂qm)

H4 = ∂q1∂q2∂q3∂q4 + g(g − 1)
∑
j<k

℘ (qj − qk)

[
∂ql ∂qm +

g(g − 1)

2
℘(ql − qm)

] (4.5)

where j < k �= l < m.
As explained in [2] for the A2 case (see also [8] for a trigonometric case) the idea is to

construct the linear operator K which intertwines {qi} and {ui;Q} representations.
Namely, we are looking for the kernel K(�u,Q; �q), �u = {u1, u2, u3}, �q = {q1, q2, q3, q4}

of the operator K such that

K(�u,Q; �q) = δ(Q − q4)K̃(�u; �x) (4.6)

where the variables ui, xi are defined by (3.20)–(3.22). The spectral determinant (4.4) is
replaced by the following differential equation for the kernel K:

[∂4
uj

− iH ∗
1 ∂

3
uj

− [H ∗
2 + 6g(g − 1)℘ (uj )]∂

2
uj

+[iH ∗
3 + 3ig(g − 1)H ∗

1 ℘(uj ) + 4g(g − 1)(g − 2)℘ ′(uj )]∂uj

+H ∗
4 + g(g − 1)H ∗

2 ℘(uj ) − ig(g − 1)(g − 2)H ∗
1 ℘

′(uj )

+3g2(g − 1)2℘2(uj ) − g(g − 1)(g2 − 3g + 3)℘ ′′(uj )]K = 0 (4.7)

where H ∗
i is the Lagrange adjoint of Hi∫

φ(�q)(Hψ)(�q) d�q =
∫

(H ∗φ)(�q)ψ(�q) d�q (4.8)
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and the condition P = −i∂Q is replaced by

[−i∂Q − H ∗
1 ]K = 0 (4.9)

which is trivially satisfied because of (4.6).
One of the possible ways to fix coefficients in (4.7) is to look at two different limits:

the classical one (when g → ∞ and we should have (4.4)) and the trigonometric limit
℘(x) → csc(x)2, ζ(x) → cot(x), where the version of (4.4) has been conjectured in [8].
These two limits fix coefficients in (4.7) uniquely.

Let us assume that 1(�q) is an eigenfunction of Hi , i = 1, 2, 3, 4 and consider the integral
transform

1̃(�u,Q) =
∫

d�q K(�u,Q; �q)1(�q). (4.10)

Now we demand that the function 1̃(�u,Q) should satisfy the separated equations

[−i∂Q − h1]1̃(�u,Q) = 0 Duj
1̃(�u,Q) = 0 (4.11)

where

Dy = ∂4
y − ih1∂

3
y − [h2 + 6g(g − 1)℘ (y)]∂2

y

+[ih3 + 3ig(g − 1)h1℘(y) + 4g(g − 1)(g − 2)℘ ′(y)]∂y
+h4 + g(g − 1)h2℘(y) − ig(g − 1)(g − 2)h1℘

′(y)
+3g2(g − 1)2℘2(y) − g(g − 1)(g2 − 3g + 3)℘ ′′(y) (4.12)

and hi are the eigenvalues of Hi corresponding to the eigenfunction 1(�q).
We are not going to discuss in this paper the question of correct boundary conditions for

the operatorK and differential equation (4.12). We only make an assumption that the boundary
can be chosen in such a way that it does not contribute to the result while integrating by parts
using (4.7), (4.8). Unlike the A2 case a correct choice of boundary conditions for (4.10)
appears to be quite a complicated problem even in the trigonometric limit and we will address
this problem in a separate paper.

Our purpose is to solve exactly the differential equation (4.7) for the kernelK . Substituting
adjoints of Hamiltonians Hi (4.5) into (4.7), using a factorization (4.6) of the kernel K and the
change of variables (3.20) we come to the following equation:

D(1)
uj
(uj ; �x)K̃(�u; �x) ∂Q + D(0)

uj
(uj ; �x)K̃(�u; �x) = 0 (4.13)

where D(1)
uj
(uj ; �x) and D(0)

uj
(uj ; �x) are the third- and fourth-order differential operators in uj ,

respectively. The kernel K̃(�u; �x) should solve both of them.
Now guided by the A3 classical case let us make a substitution

K̃(�u; �x) =
{ ∏3

i=1
σ(xi )

σ (ui )∏
i<j σ (xi − xj )

}g−1

L̃(�u; �x) (4.14)

and assume that the reduced kernel L̃(�u; �x) has the following invariance:

Conjecture 4.1.

L̃(u1 + λ, u2 + λ, u3 + λ; x1 + λ, x2 + λ, x3 + λ) = L̃(�u; �x) ∀λ ∈ D. (4.15)

It appears that both equations in (4.13) are compatible with (4.15) provided that L̃(�u; �x) satisfies
the following system of linear PDEs with elliptic coefficients:{
(g − 1)2[℘(xα − xβ) − ℘(xγ − ui) − ζ 2(xα − xβ) + ζ 2(xγ − ui)]

+(g − 1)[ζ(xα − xβ)(∂xα − ∂xβ ) + ζ(xγ − ui)(2∂ui
+ ∂xα + ∂xβ )]

+(∂ui
+ ∂xα )(∂ui

+ ∂xβ )
}
L̃(�u; �x) = 0 i, α < β = 1, 2, 3. (4.16)
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Again the differential operator in (4.16) of the second order is considerably simpler
than differential operators in (4.13). The statement that the kernel K̃ (4.14) with L̃

satisfying (4.16) will solve (4.13) can be proved by direct calculations (very lengthy). In
fact, using the conjecture 4.1 the equations (4.16) can be obtained only from the equation
D(1)

uj
(uj ; �x)K̃(�u; �x) = 0. Then the second equation D(0)

uj
(uj ; �x)K̃(�u; �x) = 0 is valid

automatically.
We strongly believe that K̃ with the factorization (4.14) and L̃ satisfying (4.16) is the

only sensible solution to (4.13). However, it would be very interesting to find other solutions
to (4.13) which are not of the form (4.14).

Now we will solve the system (4.16) for the kernel L̃(�u; �x).
Theorem 4.2. The kernel L̃(�u; �x) admits further factorization

L̃(�u; �x) = δ(u+ − x+)L(�t, s) (4.17)

�t = {t1, t2, t3} ti = xi − u1 s = u′′ − u′ = u2 − u1 (4.18)

with u+, u
′, u′′ defined in (3.22).

Proof. Consider (4.16) for i = 1, 2, 3 and rewrite it terms of variables ti = xi−u1, s = u2−u1,
u1 and 7 = u+ − x+. Using the conjecture 4.1 and comparing mixed derivatives of L̃ one can
show that (4.16) is compatible only if

L̃(u1, s; t1, t2, t3;7) ∼ δ(7). (4.19)

�
Now introduce differential operators:

Dαβ ≡ ∂tα ∂tβ + (g − 1)[ζ(tα − tβ)(∂tα − ∂tβ )

+ζ(s − tα − tβ)(∂tα + ∂tβ )] + (g − 1)2

×[℘(tα − tβ) − ℘(s − tα − tβ) − ζ 2(tα − tβ) + ζ 2(s − tα − tβ)] (4.20)

D′
αβ ≡ (∂tα + ∂s)(∂tβ + ∂s)

+(g − 1)[ζ(tα − tβ)(∂tα − ∂tβ ) + ζ(tγ − s)(∂tα + ∂tβ + 2∂s)

+(g − 1)2[℘(tα − tβ) − ℘(tγ − s) − ζ 2(tα − tβ) + ζ 2(tγ − s)] (4.21)

D′′
αβ ≡ (∂tα + ∂tγ + ∂s)(∂tβ + ∂tγ + ∂s)

+(g − 1)[ζ(tα − tβ)(∂tα − ∂tβ ) − ζ(tγ )(∂tα + ∂tβ + 2∂tγ + 2∂s)]

+(g − 1)2[℘(tα − tβ) − ℘(tγ ) − ζ 2(tα − tβ) + ζ 2(tγ )] (4.22)

where α, β, γ is a permutation of {1, 2, 3}. Then the system (4.16) for the kernel L̃(�u; �x) is
equivalent to the following system of equations for L(�t, s):

DαβL(�t, s) = 0 D′
αβL(�t, s) = 0 D′′

αβL(�t, s) = 0. (4.23)

The following theorem is an elliptic generalization of the result given in [12].

Theorem 4.3. A solution for the system (4.23) is given by the following expression:

L(�t, s) =
∮

C
dz τ(�t, s|z) (4.24)

where

τ(�t, s|z) = 9(�t, s|z)g−1 (4.25)

9(�t, s|z) = σ(z)σ (z + s)

σ 2(2z + s)

3∏
i=1

σ(z + ti)σ (z + s − ti) (4.26)

and the contour C is closed on the Riemann surface of the integrand.
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Proof. The proof of the theorem is based on three elliptic identities:

Dαβ

[
τ(�t, s|z)] = 0 (4.27)

D′
αβ

[
τ(�t, s|z)] = (g − 1)

∂

∂z

[
σ(z)σ (z + tγ )σ (2z + 2s − tγ )τ (�t, s|z)

σ (z + s − tγ )σ (z + s)σ (2z + s)σ (tγ − s)

]
(4.28)

and

D′′
αβ

[
τ(�t, s|z)] = (g − 1)

∂

∂z

[
σ(z)σ (tγ − z − s)σ (2z + s + tγ )τ (�t, s|z)

σ (z + s)σ (2z + s)σ (tγ )σ (z + tγ )

]
. (4.29)

Formulas (4.27)–(4.29) can be proved either by using (2.8)–(2.11) or checking that a
difference of LHS and RHS are elliptic functions with no poles.

These identities show that under the action of Dαβ , D′
αβ , D′′

αβ the integral in (4.24) becomes
a total derivative of the function with the same singularities as the function τ(�t, s|z) in (4.25). �

A natural question arises: do (4.24)–(4.26) describe a general solution to the system (4.23)?
In the trigonometric limit the answer is positive and changing the contour C we can produce
the whole basis of linearly independent solutions [12]. It is likely that this statement can be
generalized to the elliptic case as well.

In fact, all we have proved is that if we choose integration contours to be some curves
in (4.24) and (4.10) closed on the Riemann surface of the integrands, then the equations (4.11)
should be valid. Of course, it does not guarantee that the function (4.10) will split into the
product of functions depending on Q and ui separately. However, the asymptotics of the
integral (4.24) in the classical limit g → ∞ provides a natural parametrization for (3.28).

So let us consider the limit g → ∞. Then we have to calculate the asymptotic behaviour
of the reduced kernel L(�t, s) when g → ∞. It is clear that, in general, this asymptotics is a
multi-valued function of (t1, t2, t3, s). Due to a special form (4.25) of τ(�t, s|z) we can use the
steepest-descent method to obtain that

L(�t, s)|g→∞ � exp(g log F(�t, s)) (4.30)

where

F(�t, s) = 9(�t, s|z∗) (4.31)

with

∂

∂z
9(�t, s|z∗)|z=z∗ = 0. (4.32)

We can rewrite the equation (4.32) for z∗ as

ζ(z∗) + ζ(z∗ + s) +
3∑

i=1

[ζ(ti + z∗) + ζ(s − ti + z∗)] = 4ζ(s + 2z∗). (4.33)

This equation defines the stationary phase point z∗ at which the function (4.31) has to be
evaluated.

5. The A3 generating function

We shall start with the following lemma, which provides the main technical tool for the
construction of the A3 generating function.
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Lemma 5.1. The function 9(�t, s|z) satisfies the following PDE with elliptic coefficients:

B

(
∂

∂x ′ log 9(�t, s|z), ∂

∂x ′′ log 9(�t, s|z)|�t, v
)

= ∂

∂z
9(�t, s|z)σ (

∑3
i=1 ti − s − v)σ (z)2σ(z + s)2 ∏

i<j σ (ti − tj )

9(�t, s|z)2σ(2z + s)
∏3

i=1 σ(ti − v)
(5.1)

where v = {0, s, t1 + t2 + t3 − s}, ti = xi − u1, s = u2 − u1 and the function B(r1, r2; �x, u) is
defined by relations (3.28), (3.29).

The proof of the lemma is straightforward, but technically complicated. It is instructive
to start with the case v = t1 + t2 + t3 − s, when the RHS in (5.1) is zero. Then the LHS is some
combination of Weierstrass ζ functions which is zero. The first two cases v = {0, s} are some
of the most complicated elliptic identities in this paper. They can be proved in several steps
using identities similar to (5.12) and (5.14)–(5.16) (see below).

Now we are ready to formulate the main result of this paper.

Theorem 5.2. The A3 generating function F(v+, u
′, u′′; x1, x2, x3) performing the canonical

transformation from (x1,2,3, y1,2,3) to (u+, u
′, u′′; v+, v

′, v′′) is given by

F = v+x+ + ig log

∏3
i=1 σ(xi)∏3

i=1 σ(ui)
∏

i<j σ (xi − xj )
+ igF (5.2)

with F(�t, s)
F(�t, s) = log F(�t, s) (5.3)

where F(�t, s) is defined by (4.31)–(4.33), the variables �t, s by (4.18) and all variables
ui, u+, u

′, u′′, vi, v+, v
′, v′′, xi , yi by (3.20)–(3.22).

Proof. The proof proceeds in two steps. First of all we have to check that with the generating
function (5.2) the equation B(u) = 0 has three roots u1, u2, u3 in the primitive domain D.
Now using lemma 5.1 and definitions (3.20)–(3.29) it is easy to see that three roots u1, u2, u3

correspond exactly to the cases v = {0, s, t1 + t2 + t3 − s} of lemma 5.1. So choosing z∗ such
that ∂

∂z
9(�t, s|z)|z=z∗ = 0 we obtain the solution to B(u) = 0.

The next step is to show that the conjugated variables v1, v2, v3 (or v+, v
′, v′′) defined

by (3.8) are compatible with (5.2).
Let us denote as v∗

1 , v
∗
2 , v

∗
3 the conjugated variables obtained from the equations

∂

∂u′ F = −v∗
1 + v∗

3
∂

∂u′′ F = −v∗
2 + v∗

3 (5.4)

and

y+ =
3∑

i=1

v∗
i + ig

( 3∑
i=1

[ζ(xi) − ζ(ui)] +
3∑

i=1

yi

)
(5.5)

where we simply used (3.26) and

yi = ∂

∂xi
F = ζ(z + xi − u1) − ζ(z + u2 − xi) − 1

3

3∑
i=1

[ζ(z + xi − u1) − ζ(z + u2 − xi)]

(5.6)

from the formula for F = log 9(�t, s|z). Note that
∑3

i=1 yi = 0 simply reflects the fact that F
depends only on four variables u′, u′′, x ′, x ′′.
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Substituting (5.2) into (5.4) and using (5.5), (5.6) we obtain the following expressions
for v∗

i :

v∗
1 = 1

3y+ + ig
[
ζ(u1) + ζ(z + u2 − u1) − 2ζ(2z + u2 − u1)+

+ 1
3

3∑
i=1

[ζ(z + u2 − xi) + 2ζ(z + xi − u1) − ζ(xi)]
]

(5.7)

v∗
2 = 1

3y+ + ig
[
ζ(u2) − ζ(z + u2 − u1) + 2ζ(2z + u2 − u1)

+ 1
3

3∑
i=1

[−2ζ(z + u2 − xi) − ζ(z + xi − u1) − ζ(xi)]
]

(5.8)

v∗
3 = 1

3y+ + ig
[
ζ(u3) + 1

3

3∑
i=1

[ζ(z + u2 − xi) − ζ(z + xi − u1) − ζ(xi)]
]
. (5.9)

Now we check that these expressions are compatible with (3.8). The conditions (3.8) were
analysed in [1] where many different expressions for vi were obtained. All these expressions
are equivalent provided that B(ui) = 0. Let us introduce matrices [1]

L(p)(u) = L(u)[tr L(p−1)(u)] − (p − 1)L(p−1)(u)L(u) L(1)(u) = L(u). (5.10)

Then from formula (3.23) of [1] with n = 4, i = 1, j = 3, k = α, α = 1, 2 we have

vi = L(1)
4α (ui)L(3)

43 (ui) − L(1)
43 (ui)L(3)

4α (ui)

L(1)
4α (ui)L(2)

43 (ui) − L(1)
43 (ui)L(2)

4α (ui)
. (5.11)

Now using the definition (2.14) of the Lax operator L(u) and the addition theorem (2.11)
one can rewrite (5.11) in the following form:

vi = yα + ig

[
ζ(x3 − ui) + ζ(ui) − ζ(xα) + ζ(xα − x3) +

r̃α (ui)

r̃3−α(ui)

×[
ζ(ui − x3) − ζ(ui − x3−α) + ζ(xα − x3−α) − ζ(xα − x3)

]]
(5.12)

r̃α(ui) = yα − y3 + 2ζ(ui − xα) − 2ζ(ui − x3) α = 1, 2. (5.13)

It is easy to see that two expressions (5.12) for α = 1, 2 are equivalent exactly when
B(ui) = 0. Let us use (5.12) with α = 1. The following three elliptic identities can be proved
using (2.11). In fact, they are very useful in the proof of lemma 5.1. We shall put them in the
form convenient for our purposes, namely,

v1 − v∗
1 = ig

1

r̃2(u1)

∂

∂z
log 9(�t, s|z)

×[ζ(x2 − u1) − ζ(x3 − u1) − ζ(z + x2 − u1) + ζ(z + x3 − u1)] (5.14)

v2 − v∗
2 = ig

1

r̃2(u2)

∂

∂z
log 9(�t, s|z)

×[ζ(u2 − x2) − ζ(u2 − x3) − ζ(u2 − x2 + z) + ζ(u2 − x3 + z)] (5.15)

v3 − v∗
3 = 0. (5.16)

These elliptic identities show that if we choose again z to be z∗ such that
∂
∂z

log 9(�t, s|z)|z=z∗ = 0, then the generating function F(v+, u
′, u′′; x1, x2, x3) satisfies

d(F − v+u+) = y1 dx1 + y2 dx2 + y3 dx3 − v+du+ − v′ du′ − v′′ du′′. (5.17)

This identity proves that the transformation from (x1, x2, x3, y1, y2, y3) to (u+, u
′, u′′;

v+, v
′, v′′) is canonical [13]. �
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6. Conclusion

In this paper we have constructed the generating function of the canonical separating transform
for the A3 classical CMS. This function appears to be multi-valued. The approach we used
originated from the quantum version of the model. In fact, the purpose of this paper was to
show that the conjectured quantum separating operator produces the correct asymptotics in
the classical limit. It gives us confidence that we have obtained the correct expression for
the quantum kernel. However, the problem of correct boundary conditions looks complicated
because of quite nontrivial monodromy properties of this operator. We also think that it is
straightforward to generalize the results of this paper for the classical Ruijsenaars system in
line with [1]. We hope to address these problems in further publications.

Of course, a generalization of these results even for the classical An (n > 4) case would be
of great interest. The classical A3 Calogero–Moser model appears to be the first case where the
generating function is a function ‘living’ on some complicated Riemann surface. However, we
believe that a consideration of the classical case can give a key to constructing the An quantum
separating operator.
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